A systematic scoping review of the sustainability of vertical farming, plant-based alternatives, food delivery services and blockchain in food systems


  • Herrero, M. et al. Innovation can accelerate the transition towards a sustainable food system. Nat. Food 1, 266–272 (2020).

    Article 

    Google Scholar
     

  • Galanakis, C., Rizou, M., Aldawoud, T. M., Ucak, I. & Rowan, N. Innovations and technology disruptions in the food sector within the COVID-19 pandemic and post-lockdown era. Trends Food Sci. Technol. 110, 193–200 (2021).

    Article 
    CAS 

    Google Scholar
     

  • United Nations Department of Economic and Social Affairs Transforming our World: The 2030 Agenda for Sustainable Development (United Nations, 2015).

  • Kroll, C., Warchold, A. & Pradhan, P. Sustainable Development Goals (SDGs): are we successful in turning trade-offs into synergies? Palgrave Commun. 5, 140 (2019).

    Article 

    Google Scholar
     

  • Herrero, M. et al. Articulating the effect of food systems innovation on the Sustainable Development Goals. Lancet Planet. Health 5, e50–e62 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Béné, C. et al. Global map and indicators of food system sustainability. Sci. Data 6, 279 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaudhary, A., Gustafson, D. & Mathys, A. Multi-indicator sustainability assessment of global food systems. Nat. Commun. 9, 848 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hebinck, A. et al. A sustainability compass for policy navigation to sustainable food systems. Glob. Food Sec. 29, 100546 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saget, S. et al. Substitution of beef with pea protein reduces the environmental footprint of meat balls whilst supporting health and climate stabilisation goals. J. Clean. Prod. 297, 126447 (2021).

    Article 

    Google Scholar
     

  • Saget, S. et al. Comparative life cycle assessment of plant and beef-based patties, including carbon opportunity costs. Sustain. Prod. Consum. 28, 936–952 (2021).

    Article 

    Google Scholar
     

  • Röös, E., Patel, M. & Spångberg, J. Producing oat drink or cow’s milk on a Swedish farm—environmental impacts considering the service of grazing, the opportunity cost of land and the demand for beef and protein. Agric. Syst. 142, 23–32 (2016).

    Article 

    Google Scholar
     

  • Wang, X. et al. Health risks of population exposure to phthalic acid esters through the use of plastic containers for takeaway food in China. Sci. Total Environ. 785, 147347 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, C., Mirosa, M. & Bremer, P. Review of online food delivery platforms and their impacts on sustainability. Sustainability 12, 5528 (2020).

    Article 

    Google Scholar
     

  • Rejeb, A. & Rejeb, K. Blockchain and supply chain sustainability. Logforum 16, 363–372 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Ali, M., Chung, L., Kumar, A., Zailani, S. & Tan, K. A sustainable blockchain framework for the halal food supply chain: lessons from Malaysia. Technol. Forecast. Soc. Change 170, 120870 (2021).

    Article 

    Google Scholar
     

  • Mangla, S. K. et al. Using system dynamics to analyze the societal impacts of blockchain technology in milk supply chainsrefer. Transp. Res. E 149, 102289 (2021).

    Article 

    Google Scholar
     

  • Katsikouli, P., Wilde, A., Dragoni, N. & Hogh-Jensen, H. On the benefits and challenges of blockchains for managing food supply chains. J. Sci. Food Agric. 101, 2175–2181 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rogerson, M. & Parry, G. Blockchain: case studies in food supply chain visibility. Supply Chain Manag. J. 25, 601–614 (2020).

    Article 

    Google Scholar
     

  • Park, A. & Li, H. The effect of blockchain technology on supply chain sustainability performances. Sustainability 13, 1726 (2021).

    Article 

    Google Scholar
     

  • Feng, H., Wang, X., Duan, Y., Zhang, J. & Zhang, X. Applying blockchain technology to improve agri-food traceability: a review of development methods, benefits and challenges. J. Clean. Prod. 260, 121031 (2020).

    Article 

    Google Scholar
     

  • Rejeb, A. Blockchain potential in tilapia supply chain in Ghana. Acta Tech. Jaurinensis 11, 104–118 (2018).

    Article 

    Google Scholar
     

  • Tsolakis, N., Niedenzu, D., Simonetto, M., Dora, M. & Kumar, M. Supply network design to address United Nations Sustainable Development Goals: a case study of blockchain implementation in Thai fish industry. J. Bus. Res. 131, 495–519 (2021).

    Article 

    Google Scholar
     

  • Rana, R. L., Tricase, C. & De Cesare, L. Blockchain technology for a sustainable agri-food supply chain. Br. Food J. 123, 3471–3485 (2021).

    Article 

    Google Scholar
     

  • Karlsson Potter, H. & Röös, E. Multi-criteria evaluation of plant-based foods—use of environmental footprint and LCA data for consumer guidance. J. Clean. Prod. 280, 124721 (2021).

    Article 

    Google Scholar
     

  • Liao, X. et al. Large-scale regionalised LCA shows that plant-based fat spreads have a lower climate, land occupation and water scarcity impact than dairy butter. Int. J. Life Cycle Assess. 25, 1043–1058 (2020).

    Article 
    CAS 

    Google Scholar
     

  • McClements, D. & Grossmann, L. The science of plant-based foods: constructing next-generation meat, fish, milk, and egg analogs. Compr. Rev. Food Sci. Food Saf. 20, 4049–4100 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Santo, R. E. et al. Considering plant-based meat substitutes and cell-based meats: a public health and food systems perspective. Front. Sustain. Food Syst. 4, 134 (2020).

    Article 

    Google Scholar
     

  • Grant, C. A. & Hicks, A. L. Comparative life cycle assessment of milk and plant-based alternatives. Environ. Eng. Sci. 35, 1235–1247 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Saerens, W., Smetana, S., Van Campenhout, L., Lammers, V. & Heinz, V. Life cycle assessment of burger patties produced with extruded meat substitutes. J. Clean. Prod. 306, 127177 (2021).

    Article 

    Google Scholar
     

  • Smetana, S., Profeta, A., Voigt, R., Kircher, C. & Heinz, V. Meat substitution in burgers: nutritional scoring, sensorial testing, and life cycle assessment. Future Foods 4, 100042 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Detzel, A. et al. Life cycle assessment of animal-based foods and plant-based protein-rich alternatives: an environmental perspective. J. Sci. Food Agric. 102, 5098–5110 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fresán, U. & Rippin, H. Nutritional quality of plant-based cheese available in Spanish supermarkets: how do they compare to dairy cheese? Nutrients 13, 3291 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Curtain, F. & Grafenauer, S. Plant-based meat substitutes in the flexitarian age: an audit of products on supermarket shelves. Nutrients 11, 2603 (2019).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Fresan, U., Mejia, M., Craig, W., Jaceldo-Siegl, K. & Sabate, J. Meat analogs from different protein sources: a comparison of their sustainability and nutritional content. Sustainability 11, 3231 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Neville, M., Tarrega, A., Hewson, L. & Foster, T. Consumer-orientated development of hybrid beef burger and sausage analogues. Food Sci. Nutr. 5, 852–864 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elzerman, J., Keulemans, L., Sap, R. & Luning, P. Situational appropriateness of meat products, meat substitutes and meat alternatives as perceived by Dutch consumers. Food Qual. Prefer. 88, 104108 (2021).

    Article 

    Google Scholar
     

  • Beckerman, J., Blondin, S., Richardson, S. & Rimm, E. Environmental and economic effects of changing to shelf-stable dairy or soy milk for the breakfast in the classroom program. Am. J. Public Health 109, 736–738 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuster, M. J., Wang, X., Hawkins, T. & Painter, J. E. Comparison of the nutrient content of cow’s milk and nondairy milk alternatives: what’s the difference? Nutr. Today 53, 153–159 (2018).

    Article 

    Google Scholar
     

  • Romeo, D., Vea, E. B. & Thomsen, M. Environmental impacts of urban hydroponics in Europe: a case study in Lyon. Procedia CIRP 69, 540–545 (2018).

    Article 

    Google Scholar
     

  • Orsini, F., Pennisi, G., Zulfiqar, F. & Gianquinto, G. Sustainable use of resources in plant factories with artificial lighting (PFALs). Eur. J. Hortic. Sci. 85, 297–309 (2020).

    Article 

    Google Scholar
     

  • Kikuchi, Y., Kanematsu, Y., Yoshikawa, N., Okubo, T. & Takagaki, M. Environmental and resource use analysis of plant factories with energy technology options: a case study in Japan. J. Clean. Prod. 186, 703–717 (2018).

    Article 

    Google Scholar
     

  • Boyer, D. & Ramaswami, A. What is the contribution of city-scale actions to the overall food system’s environmental impacts? Assessing water, greenhouse gas, and land impacts of future urban food scenarios. Environ. Sci. Technol. 51, 12035–12045 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Avgoustaki, D. & Xydis, G. Indoor vertical farming in the urban nexus context: business growth and resource savings. Sustainability 12, 1965 (2020).

    Article 

    Google Scholar
     

  • Graamans, L., Baeza, E., van den Dobbelsteen, A., Tsafaras, I. & Stanghellini, C. Plant factories versus greenhouses: comparison of resource use efficiency. Agric. Syst. 160, 31–43 (2018).

    Article 

    Google Scholar
     

  • Sanjuan-Delmas, D. et al. Environmental assessment of an integrated rooftop greenhouse for food production in cities. J. Clean. Prod. 177, 326–337 (2018).

    Article 

    Google Scholar
     

  • Martin, M. & Molin, E. Environmental assessment of an urban vertical hydroponic farming system in Sweden. Sustainability 11, 4124 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Eaves, J. & Eaves, S. Comparing the profitability of a greenhouse to a vertical farm in Quebec. Can. J. Agric. Econ. 66, 43–54 (2018).

    Article 

    Google Scholar
     

  • Hardi, L. & Wagner, U. Grocery delivery or customer pickup-influences on energy consumption and CO2 emissions in Munich. Sustainability 11, 641 (2019).

    Article 

    Google Scholar
     

  • Allen, J. et al. Understanding the transport and CO2 impacts of on-demand meal deliveries: a London case study. Cities 108, 102973 (2021).

    Article 

    Google Scholar
     

  • Xie, J., Xu, Y. & Li, H. Environmental impact of express food delivery in China: the role of personal consumption choice. Environ. Dev. Sustain. 23, 8234–8251 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Arunan, I. & Crawford, R. Greenhouse gas emissions associated with food packaging for online food delivery services in Australia. Resour. Conserv. Recycl. 168, 105299 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Springmann, M., Clark, M. A., Rayner, M., Scarborough, P. & Webb, P. The global and regional costs of healthy and sustainable dietary patterns: a modelling study. Lancet Planet. Health 5, e797–e807 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desiderio, E., García-Herrero, L., Hall, D., Segrè, A. & Vittuari, M. Social sustainability tools and indicators for the food supply chain: a systematic literature review. Sustain. Prod. Consum. 30, 527–540 (2022).

    Article 

    Google Scholar
     

  • Afshin, A. et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393, 1958–1972 (2019).

    Article 

    Google Scholar
     

  • Martin, C., Lange, C. & Marette, S. Importance of additional information, as a complement to information coming from packaging, to promote meat substitutes: a case study on a sausage based on vegetable proteins. Food Qual. Prefer. 87, 104058 (2021).

    Article 

    Google Scholar
     

  • Alternative Seafood. State of the Industry Report (Good Food Institute, 2021); https://gfi.org/resource/alternative-seafood-state-of-the-industry-report/

  • Gephart, J. A. et al. Environmental performance of blue foods. Nature 597, 360–365 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Golden, C. D. et al. Aquatic foods to nourish nations. Nature 598, 315–320 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalantari, F., Tahir, O. M., Joni, R. A. & Fatemi, E. Opportunities and challenges in sustainability of vertical farming: a review. J. Landsc. Ecol. 11, 35–60 (2018).

    Article 

    Google Scholar
     

  • van Delden, S. H. et al. Current status and future challenges in implementing and upscaling vertical farming systems. Nat. Food 2, 944–956 (2021).

    Article 

    Google Scholar
     

  • Weidner, T., Yang, A., Forster, F. & Hamm, M. W. Regional conditions shape the food–energy–land nexus of low-carbon indoor farming. Nat. Food 3, 206–216 (2022).

    Article 
    CAS 

    Google Scholar
     

  • World Health Organization Slide to Order: A Food Systems Approach to Meal Delivery Apps (WHO European Office for the Prevention and Control of Noncommunicable Diseases, 2021); https://apps.who.int/iris/handle/10665/350121

  • Pennisi, G. et al. Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red:blue ratio provided by LED lighting. Sci. Rep. 9, 14127 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bryant, C., Szejda, K., Parekh, N., Deshpande, V. & Tse, B. A survey of consumer perceptions of plant-based and clean meat in the USA, India, and China. Front. Sustain. Food Syst. 3, 11 (2019).

    Article 

    Google Scholar
     

  • Henriksson, P. J. G. et al. A rapid review of meta-analyses and systematic reviews of environmental footprints of food commodities and diets. Glob. Food Sec. 28, 100508 (2021).

    Article 

    Google Scholar
     

  • Tricco, A. C. et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann. Intern. Med. 169, 467–473 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Arksey, H. & O’Malley, L. Scoping studies: towards a methodological framework. Int. J. Soc. Res. Methodol. 8, 19–32 (2005).

    Article 

    Google Scholar
     

  • Kohl, C. et al. Online tools supporting the conduct and reporting of systematic reviews and systematic maps: a case study on CADIMA and review of existing tools. Environ. Evid. 7, 8 (2018).

    Article 

    Google Scholar
     

  • Folke, C., Biggs, R., Norström, A. V., Reyers, B. & Rockström, J. Social-ecological resilience and biosphere-based sustainability science. Ecol. Soc. 21, 41 (2016).

    Article 

    Google Scholar
     



  • Source link

    Previous articleNew Apple Leak Doubles Down On iPhone 15 Release Shock
    Next articleBitcoin Whale Moves 1,927 BTC Off Kraken – Bitcoin (BTC/USD)